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a b s t r a c t

The Finite Element (FE) integration of the coupled consolidation equations requires the
solution of linear symmetric systems with an indefinite saddle point coefficient matrix.
Because of ill-conditioning, the repeated solution in time of the FE equations may be a
major computational issue requiring ad hoc preconditioning strategies to guarantee the
efficient convergence of Krylov subspace methods. In the present paper a Mixed Constraint
Preconditioner (MCP) is developed combining implicit and explicit approximations of the
inverse of the structural sub-matrix, with the performance investigated in some represen-
tative examples. An upper bound of the eigenvalue distance from unity is theoretically pro-
vided in order to give practical indications on how to improve the preconditioner. The MCP
is efficiently implemented into a Krylov subspace method with the performance obtained
in 2D and 3D examples compared to that of Inexact Constraint Preconditioners and Least
Square Logarithm scaled ILUT preconditioners. Two variants of MCP (T-MCP and D-MCP),
developed with the aim at reducing the cost of the preconditioner application, are also
tested. The results show that the MCP variants constitute a reliable and robust approach
for the efficient solution of realistic coupled consolidation FE models, and especially so
in severely ill-conditioned problems.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The time-dependent displacements and fluid pore pressure in porous media are controlled by the consolidation theory.
This was first mathematically described by Biot [1], who coupled the elastic equilibrium equations with a continuity or mass
balance equation to be solved under appropriate boundary and initial flow and loading conditions.

The coupled consolidation equations are typically solved numerically using Finite Elements (FE) in space, thus giving rise
to a system of first-order differential equations the solution to which is addressed by an appropriate time marching scheme.
A major computational issue is the repeated solution in time of the resulting discretized indefinite equations, which can be
generally written as
Ax ¼ b; where A ¼ K BT

B �C

" #
: ð1Þ
Both the sub-matrices K and C are symmetric positive definite (SPD). Denoting with m the number of FE nodes, C 2 Rm�m,
B 2 Rm�n and K 2 Rn�n, where n is equal to 2m or 3m according to the spatial dimension of the problem if the same interpo-
lation is used for displacement and pressure variables.
. All rights reserved.
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The use of iterative solvers is recommended in large size realistic consolidation models. Among them, projection (or con-
jugate gradient-like) methods based on Krylov subspaces for indefinite systems, such as BiCGStab (Bi-Conjugate Gradient
Stabilized [2]), are attracting a growing interest on the grounds of their robustness and efficiency [3–8]. However, the small
time integration steps typically required in the early phase of the analysis may yield a severe ill-conditioning [9], and the
selection of an efficient preconditioning strategy turns out to be a key issue to guarantee and accelerate the convergence.
Note on passing that popular symmetric Krylov solvers, such as MINRES, cannot be generally used for problem (1) because
of the indefiniteness of the preconditioners.

Matrix A in (1) is a classical example of saddle point problem, which is encountered in other fields as well including con-
strained optimization, least squares and Navier–Stokes equations. The constraint preconditioners for Krylov solvers in the
solution of saddle point problems have been studied by a number of authors [10–16]. In most of the above references the
preconditioner is obtained from Awith the (1,1) block K well approximated and replaced by its diagonal. In the coupled con-
solidation problem, however, K is not diagonally dominant and a better approximation is required to ensure convergence.
Bergamaschi et al. [17] have developed both an Exact and an Inexact Constraint Preconditioner (ECP and ICP, respectively)
with the explicit approximation of K�1 provided by the approximate inverse preconditioner AINV [18]. The ICP variant is sug-
gested with the aim at avoiding the need for exactly solving an inner m�m linear system for each preconditioner application
as is required by ECP. In the present paper a Mixed Constraint Preconditioner (MCP) is developed where an implicit and an
explicit approximation of K�1 are provided by an incomplete Cholesky decomposition ILLT and AINV, respectively. Using the
spectral analysis it is shown that most of the eigenvalues of the preconditioned matrix are real positive and, most impor-
tantly, clustered around unity, with the value of the few remaining ones carefully kept under control. Two variants of
MCP are then considered, based on the block structure of the preconditioner. The former, called Triangular MCP (T-MCP),
uses an upper block triangular approximation of MCP, while the latter, denoted as Diagonal MCP (D-MCP) uses the block
diagonal part of MCP only.

The paper is organized as follows. After a brief review of FE coupled consolidation equations, ECP and ICP with their main
properties are revisited. In particular, a theoretical bound is given for the ICP eigenspectrum which helps give some practical
indications as to the implementation of an effective preconditioner. Then, MCP is developed on the basis of the previous the-
oretical findings and experimented with in realistic medium and large size 2D and 3D problems. The MCP performance is
compared to that of more traditional preconditioning techniques, such as ILUT with optimal fill-in degree [19] and a preli-
minary Least Square Logarithm (LSL) scaling [6], and that of ICP. The possible use of the T-MCP and D-MCP variants is finally
discussed with a few remarks closing the paper.

2. Finite element coupled consolidation equations

The system of partial differential equations governing the 3D coupled consolidation process in fully saturated porous
media is derived from the classical Biot’s formulation [1] and successive modifications as:
ðkþ lÞ o�
oi
þ lr2ui ¼ a

op
oi
; i ¼ x; y; z; ð2Þ

1
c
rðkrpÞ ¼ ½/bþ cbrða� /Þ� op

ot
þ a

o�
ot
; ð3Þ
where cbr and b are the volumetric compressibility of solid grains and water, respectively, / is the porosity, k the medium
hydraulic conductivity, � the medium volumetric dilatation, a the Biot coefficient, k and l are the Lamé constant and the
shear modulus of the porous medium, respectively, c is the specific weight of water, r the gradient operator, x, y, z are
the coordinate directions, t is time, and p and ui are the incremental pore pressure and the components of incremental dis-
placement along the i-direction, respectively.

Use of FE in space yields a system of first order differential equations which can be integrated by the Crank–Nicolson
scheme [9]. The resulting linear system has to be repeatedly solved to obtain the transient displacements and pore pressures.
The unsymmetric matrix controlling the solution scheme reads:
A ¼
K=2 �Q=2

QT

Dt H=2þ P
Dt

" #
; ð4Þ
where K, H, P and Q are the elastic stiffness, flow stiffness, flow capacity and flow-stress coupling matrices, respectively.
Matrix A can be readily symmetrized by multiplying the upper set of equations by 2 and the lower set by �Dt, thus obtaining
the sparse 2� 2 block symmetric indefinite matrix (1) where B ¼ �QT and C ¼ DtH=2þ P.

A major difficulty in the repeated solution to system (1) is the likely ill-conditioning of A caused by the large difference in
magnitude between the coefficients of blocks K, B and C. The generic ði; jÞ element of each matrix is related to the hydro-
mechanical properties of the porous medium as follows [9]:
Kij / E; ð5Þ
Bij /

ffiffiffiffi
V
p

; ð6Þ

Cij / Dt
k
c
þ /bV ; ð7Þ
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where E is the Young modulus of the porous medium and V a characteristic elemental size of the FE grid. The symbol /,
meaning proportional to, aims at indicating the basic parameters controlling the Kij, Bij and Cij size, with the unknown pro-
portionality constants in (5)–(7) depending on the FE grid size and distortion. Being Cij related to the time integration step
Dt, the ill-conditioning ofA is basically dependent on the Dt size. Ferronato et al. [9] have shown that a critical time step Dtcrit

exists that can be defined as:
Dtcrit ¼ vðwÞVc
kE

; ð8Þ
where w ¼ /bE and v is a generally unknown dimensionless factor depending on w and the element distortion. For Dt 6 Dtcrit

the conditioning of A suddenly degrades with the solution to (1) difficult to get independently of the solver choice. In long-
term simulations a small Dt is typically needed in the early stage of the consolidation process, while larger values may be
used as the system approaches the steady state. Hence, the initial steps are the most critical ones, with the convergence ex-
pected to improve as the simulation proceeds.

3. Exact Constraint Preconditioner

To solve system (1) we elect to use a Krylov method accelerated with the preconditioner M�1 where
M¼ G BT

B �C

" #
ð9Þ
and G is a SPD substitute for K. An exhaustive eigenanalysis of the preconditioned matrix can be found for instance in [20].
We only mention here some important results concerning the eigenvalue distribution of M�1A.

Let us denote with aK and bK the smallest and the largest eigenvalue, respectively, of G�1K . The eigenvalues of the pre-
conditioned matrixM�1A depend on the quality of G�1 as an approximation of K�1, as is stated by the following theorem:

Theorem 3.1. If aK < 1 < bK then the eigenvalues k of M�1A are either one (with multiplicity at least m) or real positive and
bounded by aK 6 k 6 bK .

Proof. The thesis follows from the statement of Theorem 1 in [21]. h

If G�1 is a preconditioner for K, the hypothesis of Theorem 3.1 (aK < 1 < bK ) is very common in practice. In particular, if
G�1 ¼ diagðKÞ�1 the above hypothesis can be directly verified [22]. Moreover, as proved e.g. in [21], the classical Precondi-
tioned Conjugate Gradient (PCG) algorithm is theoretically expected to converge with the indefinite matrix (1), provided that
the last m components of the initial residual r0 are zero. This holds if the initial guess x0 is set to M�1b.

The application ofM�1 in a Krylov method, such as PCG, requires at each iteration the computation of y ¼M�1r, i.e. the
solution to:
G BT

B �C

" #
y1

y2

� �
¼

r1

r2

� �
: ð10Þ
Vector y can be computed by solving for y1 in the upper set of equations (10):
y1 ¼ G�1ðr1 � BTy2Þ ð11Þ
and substituting equation (11) in the lower set:
ðBG�1BT þ CÞy2 ¼ BG�1r1 � r2: ð12Þ
Matrix S ¼ BG�1BT þ C is the Schur complement of system (10). Hence, the cost of applyingM�1 basically rests on the effi-
cient solution to the linear m�m SPD system (12). This task can be accomplished, for example, by using PCG preconditioned
with the incomplete Cholesky decomposition of S with no fill-in (IC(0)), thus defining an inner iteration cycle.

The Schur complement S can be computed only if G�1 is known explicitly. To fulfill such a requirement we may use the
approximate inverse AINV [23,24] which is readily available in the factorized form:
K�1 ’ G�1 ¼ ZZT; ð13Þ
where Z is upper triangular. In Eq. (13) and those following, the symbol ’ is used to indicate that the right-hand side is a
generally dropped approximation of the left-hand side. A simpler choice for G�1, such as diagðKÞ�1, has proved ineffective
in realistic consolidation problems [17]. The preconditioner M�1 with G�1 provided by (13) will be referred to as Exact
Constraint Preconditioner (ECP).

4. Inexact Constraint Preconditioner

Although a very accurate solution of (10) is not really needed, solving the inner system (12) at each application ofM�1

can represent a significant burden for the overall PCG scheme. To make theM�1 application cheaper, we can solve instead a
substitute for (12) using the IC(0) factorization of S:
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S ’ eS ¼ LSLT
S : ð14Þ
In this way the solution to system (12) is replaced by a cost effective forward and backward substitution:
LSLT
S y2 ¼ BG�1r1 � r2: ð15Þ
Obviously Theorem 3.1 no longer holds for the new resulting preconditioner cM�1, and therefore the PCG convergence is no
longer theoretically guaranteed. Using G�1 as in (13), cM�1 can be factorized as follows:
cM�1 ¼ In �G�1BT

0 Im

" #
G�1 0

0 �ðLSLT
SÞ
�1

" #
In 0

�BG�1 Im

� �
ð16Þ

¼
Z �ZZT BTL�T

S

0 L�T
S

" #
ZT 0

L�1
S BZZT �L�1

S

" #
¼ UL; ð17Þ
where U and L are upper and lower triangular matrices, respectively, and Ii is the i� i identity matrix. The factorized form
(17) of cM�1 is very well suited to an efficient implementation. The preconditioner cM�1 will be referred to as Inexact Con-
straint Preconditioner (ICP) and is to be used in combination with a nonsymmetric Krylov solver such as Bi-CGStab [2] or
QMR [25].

By distinction with M�1A, the preconditioned matrix cM�1A may possess complex eigenvalues. Let us define the
matrices:
EK ¼ In � ZTKZ; ES ¼ Im � L�1
S SL�T

S ; ð18Þ

which provide a measure of the quality of the K�1 and S�1 approximations, respectively. Denoting by k�k a generic matrix
norm (e.g. the spectral norm), the following theorem provides a bound for the distance of the eigenvalues of cM�1A from
unity.

Theorem 4.1. Let R ¼ L�1
S BZ. Then any eigenvalue k of cM�1A satisfies the inequality: j k� 1 j6 ð1þ kRkÞ2kEKk þ kESk.

Proof. Recalling (16), cM�1 can also be written as:
cM�1 ¼ LTJL ¼ Z ZRT

0 �L�T
S

" #
In 0
0 �Im

� �
ZT 0

RZT �L�1
S

" #
:

It is directly proved that the generalized eigenproblem Az ¼ kcMz is equivalent to LALTw ¼ kJw, with w ¼ L�Tz, i.e.:
ZTKZ �EK RT

�REK �REK RT � L�1
S SL�T

S

" #
w1

w2

� �
¼ k

In 0
0 �Im

� �
w1

w2

� �
ð19Þ
or equivalently:
�EK �EK RT

REK REK RT

" #
w1

w2

� �
�

0 0
0 ES

� �
w1

w2

� �
¼ ðk� 1Þ

w1

w2

� �
: ð20Þ
Then taking norms leads to:
jk� 1j 6 ð1þ kRkÞ2kEKk þ kESk: � ð21Þ
Some authors as well [12,26] have provided other more refined bounds in similar analyses. However, Theorem 4.1 may
prove useful for giving indications on the most appropriate practical selection of G, as will be shown later.

The following theorems give additional information on the eigenvalues of cM�1A. In particular, we prove that at least
n�m eigenvalues are real positive and bounded by those of G�1K , others are 1 and the imaginary part IðkÞ of the complex
eigenvalues has a more restrictive upper bound than the one given in (21):

Theorem 4.2. The preconditioned matrix cM�1A has at least n�m real eigenvalues k bounded by aK 6 k 6 bK .

Proof. Recalling equation (16), the eigenvalues k of cM�1A must satisfy the following generalized eigenvalue problem:
K BT

B �C

" #
x
y

� �
¼ k

In 0
BG�1 Im

� �
G 0
0 �eS
� �

In G�1BT

0 Im

" #
x
y

� �
: ð22Þ
Performing the product in the right hand side of (22) yields:
cM ¼ G BT

B �C þ S� eS
" #

¼ G BT

B �bC
" #
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with bC ¼ C � Sþ eS. Hence the generalized eigenvalue problem (22) reads:
K BT

B �C

" #
x
y

� �
¼ k

G BT

B �bC
" #

x
y

� �
: ð23Þ
There are at least n�m linearly independent eigenvectors satisfying the relationship:
x
y

� �
¼
Wu

0

� �

withW the n� ðn�mÞ matrix whose columns form a basis for the null space of B. With these eigenvectors the generalized
problem (23) reduces to:
Kx ¼ kGx:
Therefore, at least n�m eigenvalues of cM�1A are bounded by aK 6 k 6 bK . h

Theorem 4.3. If BZEK ZT BT þ S is positive semidefinite then
jIðkÞj 6 kRk � kEKk: ð24Þ
Proof. The proof follows from the application of Proposition 2.12 in [26] to the matrix pencil (19). h

Theorems 4.1 and 4.3 provide a bound that depends on kRk, i.e. ultimately on the norms of eS, B and K. Recalling equations
(5)–(7), it can be argued that keSk is related to the hydro-geomechanical properties of the porous medium as follows:
keSk � kSk 6 kBk2kKk�1 þ kCk / V
E
þ Dt

k
c
þ /bV : ð25Þ
In real porous media, the value of 1=E is typically between 2 and 3 orders of magnitude larger than b with / seldom exceed-
ing 0.4, and several orders of magnitude larger than k=c, so for small Dt the norm of eS is practically controlled by V=E. In
essence, the magnitude of kRk can be roughly estimated as is shown below:
kRk 6 kLSk�1kBkkZk � keSk�1=2kBkkKk�1=2 /
ffiffiffiffi
E
V

r
�
ffiffiffiffi
V
p
�
ffiffiffi
1
E

r
¼ 1: ð26Þ
Therefore, it might be concluded that for a small Dt, i.e. in the most ill-conditioned situations, the norm of R is of the order of
1 irrespective of the actual hydro-geomechanical properties of the porous medium. It turns out from (21) that kEKk roughly
weighs four times more than kESk, hence the ICP computational performance appears to be in the first place connected with
the quality of G�1. By contrast, as Dt !1 the norm of R becomes increasingly small, hence the errors kEKk and kESk play a
similar role in controlling the eigenvalue distribution of the overall preconditioned matrix. This seems to indicate that a rel-
atively larger effort should be placed on the selection of a better preconditioner for K rather than for S, and particularly so for
small to moderate values of the time integration step.

5. Mixed Constraint Preconditioner

A major drawback of the constraint preconditioning as was previously implemented is the somewhat ‘‘poor” AINV
approximation of K�1 which may require a large number of iterations for Bi-CGStab preconditioned with ICP to converge
[17]. However, this is only partially connected with the quality of AINV itself. Rather, it is the need for the explicit construc-
tion of the Schur complement matrix that calls for a reduced fill-in of Z and hence indirectly prevents a small kEKk value. We
can try to remove this inconvenience by looking for an ‘‘implicit” approximation of K�1, as is shown below. A most natural
choice is the incomplete Cholesky factorization of K with variable fill-in:
K�1 ’ G�1 ¼ ðLK LT
KÞ
�1
: ð27Þ
Let us consider the application of ECP using Eq. (27). The fill-in of LK can be much increased, thus allowing for a faster con-
vergence from Theorem 3.1. Eq. (10) now reads:
LK LT
K BT

B �C

" #
y1

y2

� �
¼

r1

r2

� �
: ð28Þ
Solving for y1 in the upper set of Eq. (28) yields:
y1 ¼ ðLK LT
KÞ
�1ðr1 � BTy2Þ ð29Þ
and substituting Eq. (29) in the lower set gives:
½BðLK LT
KÞ
�1BT þ C�y2 ¼ BðLK LT

KÞ
�1r1 � r2: ð30Þ
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The coefficient matrix in (30) is a new Schur complement:
S ¼ BðLK LT
KÞ
�1BT þ C: ð31Þ
Unfortunately, the SPD system (30) cannot be easily solved as matrix S is not known explicitly. Although the S implicit form
(31) can be used to perform a product between S and a vector, and consequently one may think of solving (30) by a PCG
method, a suitable preconditioner for S is not easily available. To avoid again the solution to (30) while retaining the conve-
nient factorization (27) for G�1, we can build explicitly an approximation of S using the AINV of K�1, namely:
S ¼ BZZTBT þ C ð32Þ
and then performing an incomplete Cholesky factorization:
S ’ eS ¼ LSLT
S :
In this way we expect kEKk to be properly reduced with respect to the ICP implementation, but introduce an additional
approximation in the Schur complement due to the use of Eq. (32) instead of (31), thus leading to a possibly larger kESk.
As Theorem 4.1 still holds with R ¼ L�1

S BL�T
K and the estimate (26) in (21) indicates that the distance of the eigenvalues of

the preconditioned matrix from 1 depends mildly on kESk, we expect the above G�1 improvement to make up for the wors-
ening of S yielding on the overall a better preconditioner. This ICP variant blending two different approximations for K�1 in
the same scheme is called Mixed Constraint Preconditioner (MCP).

5.1. MCP application

Similarly to ECP and ICP [17], the MCP application requires first the explicit calculation of the matrix S ¼ BZZTBT þ C and
then its incomplete triangular factor. Forming S may be time and memory consuming being the result of two sparse matrix–
matrix products and one sparse sum of matrices. However, it may be noted that the evaluation of S0 ¼ BZZTBT, which in-
volves the main computational burden of S, is independent of the time step Dt, and therefore can be done just once at
the beginning of the simulation. The computation of S0 will be referred to as ‘‘preprocessing” in the sequel. Moreover, since
matrix S can be much less sparse than C, its storage efficiency may be properly increased by dropping the terms below a user-
specified tolerance sS relative to the diagonal entry.

Recalling Eq. (16), the MCP can be written as:
fM�1 ¼ In �L�T
K L�1

K BT

0 Im

" #
ðLK LT

KÞ
�1 0

0 �ðLSLT
SÞ
�1

" #
In 0

�BL�T
K L�1

K Im

� �

¼
L�T

K �L�T
K L�1

K BTL�T
S

0 L�T
S

" #
L�1

K 0

L�1
S BL�T

K L�1
K �L�1

S

" #
¼ eU eL: ð33Þ
With the factorized form (33), the ‘‘split” preconditioning technique can be conveniently implemented within the classical
Bi-CGStab algorithm. The computation of the product eLAeUh, with h a generic vector, is accomplished by the algorithm of
Table 1, where v ¼ eUh; z ¼ Av and t ¼ eLz. Note that the algorithm in Table 1, involving forward and backward substitutions,
is only slightly more expensive than the one with ICP which requires the product of the triangular matrices Z and ZT by a
vector.

5.2. Triangular and diagonal MCP variants

The computational cost of the application of MCP can be reduced by dropping either the left or the right factor in the first
line of Eq. (33), or both, thus giving rise to two new block preconditioners:
fM�1
1 ¼

ðLK LT
KÞ
�1 L�T

K L�1
K BTL�T

S L�1
S

0 �ðLSLT
SÞ
�1

" #
; ð34Þ

fM�1
2 ¼

ðLK LT
KÞ
�1 0

0 �ðLSLT
SÞ
�1

" #
: ð35Þ
Similar strategies have been successfully applied in the solution of the Stokes problem [27–29]. The preconditioner fM�1
1 is

denoted as Triangular MCP (T-MCP), while fM�1
2 is the Diagonal MCP (D-MCP). As they are the outcome of additional approx-

imations, fM�1
1 and fM�1

2 are likely to require more Bi-CGStab iterations to converge than fM�1.
Following the proof of Theorem 4.1 with R ¼ L�1

S BL�T
K , the generalized eigenproblem Az ¼ kfM1z has the same eigenvalues

as:
�EK �RT

REK �ES

" #
w1

w2

� �
¼ ðk� 1Þ

w1

w2

� �
: ð36Þ



Table 1
Algorithm 1: application of the MCP preconditioned matrix

1. solve LT
Sv1 ¼ h2

2. v0 ¼ BT
v1

3. solve LKw
0 ¼ v0

4. w ¼ h1 � w0
5. solve LT

Kv2 ¼ w

6. z1 ¼ Kv1 þ BT
v2

7. z2 ¼ Bv1 � Cv2

8. solve LKt1 ¼ z1

9. solve LT
Kw ¼ t1

10. w0 ¼ Bw� z2

11. solve LSt2 ¼ w0

L. Bergamaschi et al. / Journal of Computational Physics 227 (2008) 9885–9897 9891
The eigenproblem (36) turns out to be quite similar to (20). After taking norms, we obtain a similar bound as in (21):
jk� 1j 6 ð1þ kRkÞkEKk þ kRk þ kESk;
which indicates that as kEKk and kESk tend to zero not all the eigenvalues will necessarily tend to one because of the matrix R.
However, for reasonable values of kEKk; kESk; kRk the two bounds suggest that MCP and T-MCP should behave similarly. A
thorough spectral analysis of block triangular preconditioners of this form can be found in [30].

By distinction, the generalized eigenproblem Az ¼ kfM2z is equivalent to
I � EK �RT

R �L�1
S CL�T

S

" #
w1

w2

� �
¼ k

w1

w2

� �
: ð37Þ
For small Dt values the order of magnitude of the terms in the (2,2) block of (37) is about 10�3—10�2 regardless of kEKk and
kESk. Only for very large Dt the preconditioned matrix becomes diagonally dominant with a more favorable eigenvalue dis-
tribution. In particular, if Dt is large, R resembles the null matrix with the MCP, T-MCP and D-MCP preconditioned matrices
taking on asymptotically the same form:
fM�1A � fM�1
1 A � fM�1

2 A �
I � EK 0

0 I � ES

� �
: ð38Þ
Therefore, we expect MCP, T-MCP and D-MCP to exhibit a similar performance for large Dt, with MCP and T-MCP to be gen-
erally preferred for small Dt.

6. Numerical results

6.1. Test problem

A vertical cross-section of the cylindrical porous volume used as a test problem is shown in Fig. 1. The medium consists of
a sequence of alternating sandy and clayey layers, with the hydraulic conductivity ksand ¼ 10�5 m=s and kclay ¼ 10�8 m=s, the
porosity / ¼ 0:20, the Poisson ratio m ¼ 0:25, and the Young modulus E ¼ 833:33 MPa, corresponding to a uniaxial vertical
compressibility cM ¼ 10�3 MPa�1. Standard Dirichlet conditions are prescribed, with fixed outer and bottom boundaries, and
aquifer
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Fig. 1. Schematic representation of a vertical cross-section of the stratified porous medium used as a test problem.



Table 2
Main features of the sample problems

m n N nnzðKÞ nnzðBÞ nnzðCÞ nnzðAÞ

M3Dsm 3553 10,659 14,212 453,321 151,107 50,369 805,904
M3D 31,775 95,325 127,100 4,177,395 1,392,465 464,155 7,426,480
M2Dsm 5551 11,102 16,653 153,004 76,502 38,251 344,259
M2D 21,901 43,802 65,703 608,404 304,202 152,101 1,368,909
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zero pore pressure variation on the top and outer surfaces (see Fig. 1). The upper boundary is a traction-free plane. This sam-
ple problem is solved using both fully three-dimensional (M3Dsm and M3D) and axisymmetric (M2Dsm and M2D) grids.

In the M3Dsm test case, the medium is discretized into linear tetrahedral elements by projecting a plane triangulation
made of 209 nodes and 400 triangles onto 17 layers located at different depths [31]. The grid M3Dsm totals m ¼ 3553 nodes
with a global matrix size N equal to 14,212. In the M3D test case, a plane triangulation made of 1025 nodes and 2016 triangles
projected onto 31 layers is used. The M3D problem totals m ¼ 31;775 nodes with N ¼ 127;100.

In the axisymmetric configuration, the porous volume is discretized into annular elements with triangular cross-section
and the FE equations are solved on a radial plane. We use two different regular triangulations depending on the values of the
radial and vertical spacings Dr and Dz. They will be denoted in the sequel as M2Dsm (Dr ¼ Dz ¼ 50 m, m ¼ 5551, N ¼ 16;653)
and M2D (Dr ¼ Dz ¼ 25 m, m ¼ 21;901, N ¼ 65;703).

The main features of the matrices arising from the above sample problems are summarized in Table 2 along with the
number of nonzeroes nnz of A and the sub-matrices K, B and C.

6.2. Eigenvalue distribution of the preconditioned matrix

The quality of a preconditioner can be measured by the eigenvalue distribution of the preconditioned matrix. For the sake
of simplicity, we discuss the outcome of the smallest problem M3Dsm, the other results being qualitatively similar.

Let us introduce the following symbols:
Table 4
Problem

Prec. (s

ECP (0.

ICP (0.1

MCP (0

T-MCP

Table 3
Spectra

ICP
MCP
Mk ¼max RðkÞ; mk ¼min RðkÞ; MI ¼max IðkÞ; j ¼ Mk

mk
;

where k indicates a generic eigenvalue ofM�1A, cM�1A or fM�1A with RðkÞ its real part. The distribution of the eigenvalues
is studied for Dt ¼ 1 s and a dropping tolerance in the AINV computation sA ¼ 0:1. We recall on passing that sA indicates the
fraction of the diagonal term below which an AINV coefficient is dropped, i.e. the larger sA the sparser Z. The spectral norm of
R, EK and ES along with the spectral condition number l of G�1K is shown in Table 3. Note that with ICP kRk is about 1 inde-
pendently of sA, as expected from (26), while with MCP kRk increases because of the additional approximation on S (use of
Eq. (32) in place of (31)) introduced in the mixed approach.

The eigenvalue distribution of the preconditioned matrix with ECP, ICP, MCP and T-MCP is summarized in Table 4 and
Fig. 2. Careful inspection of table and figures reveals that:

� As anticipated from theory, the ECP preconditioned matrixM�1A possesses all real and positive eigenvalues. Moreover,
the ratio j is significantly less than lðG�1KÞ thus suggesting that the overall preconditioner is superior to the precondi-
tioner of K;
M3Dsm with Dt ¼ 1 s. Distribution of the eigenvalues of the preconditioned matrix with reference to the distance from unity (d ¼j k� 1 j)

A) d < 0:01 d < 0:1 d < 0:5 d P 0:5 mk Mk MI j # Real

1) 7924 11,014 13,875 337 0.008 2.365 0 296 14,212
(55.8%) (77.5%) (97.6%) (2.4%)

) 4460 10,310 13,861 351 0.008 2.364 0.245 296 8040
(31.3%) (72.5%) (97.5%) (2.5%)

.1) 9801 12,721 14,168 44 0.183 4.158 0.146 23 11,262
(69.0%) (89.5%) (99.7%) (0.3%)

(0.1) 8707 12,605 14,158 54 0.195 4.176 0.644 21 10,446
(61.3%) (88.7%) (99.6%) (0.4%)

l norms of R, EK and ES in the M3Dsm test case with Dt ¼ 1 s

kRk kEKk kESk lðG�1KÞ

1.05 1.59 0.64 481.9
1.95 0.88 3.13 14.5
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� With ICP the spectrum of cM�1A is no longer real. However, it turns out that its real part remains practically unchanged
with no significant variations of j. As is also observed in [26] the eigenvalues equal to one with ECP evolve to complex
eigenvalues with a relatively small imaginary part;

� The MCP preconditioned matrix fM�1A has a larger number of real eigenvalues than cM�1A and the ratio j is more than 10
times smaller. This is due to the better implicit K�1 approximation accounted for by a mk value closer to 1.

� The main difference between the eigenspectrum of fM�1A and fM�1
1 A rests on the increase of the imaginary part of the

complex eigenvalues. The real spectrum, however, is substantially unchanged;
� Consistent with Theorems 4.1, 4.2 and 4.3, the distance of any eigenvalue from unity is smaller than ð1þ kRkÞ2kEKk þ kESk,

the imaginary part is bounded by kRk � kEKk and the number of real eigenvalues is larger than n�m.

The above analysis shows that the spectral condition numbers of the preconditioned matrix are similar with both ECP and
ICP. Therefore, the inexact implementation is to be generally preferred as it is less expensive, as is also evidenced with other
numerical examples in [17]. By distinction, MCP exhibits a more favorable eigenvalue distribution mainly because of a larger
mk, hence MCP is expected to perform better than ICP. As the real spectrum of the triangular variant T-MCP is practically the
same as MCP, we also expect T-MCP to represent a promising alternative to MCP owing to its slightly smaller application
cost.

The eigenspectra previously discussed, along with the theoretical findings provided by Theorems 3.1 and 4.2, suggest that
the quality of any Constraint Preconditioner is basically bounded by the spectral condition number of G�1K . Hence, as the
mesh is refined the convergence rate of a solver preconditioned with ECP, ICP and MCP is expected to scale in the same
way as using G�1 as a preconditioner for K. Recall that K is obtained with the FE discretization of Eq. (2) where the differential
operator is very similar to the Laplace operator. It is well-known that the spectral condition number of a Laplace FE matrix
scales proportionally to, and hence increases as, 1=‘2, where ‘ is a representative linear measure of the element size, and that
an incomplete Cholesky factorization does not mitigate this outcome. It might be shown that this holds true for the struc-
tural stiffness matrix K as well. Therefore, as the mesh is refined we expect also the quality of a Constraint Preconditioner to
scale approximately as 1=‘2.
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6.3. Performance of the Mixed Constraint Preconditioner

The CPU time and the number of iterations to convergence for Bi-CGStab preconditioned with LSL–ILUT [6], ICP and MCP
in the M3Dsm, M3D, M2Dsm and M2D test problems are shown below. A measure q of the density of the preconditioner factors is
defined as:

LSL–ILUT q ¼ nnzðILUTÞ=nnzðAÞ
ICP q ¼ ½nnzðZÞ þ nnzðLSÞ�=nnzðAÞ
MCP q ¼ ½nnzðLSÞ þ nnzðLKÞ�=nnzðAÞ

Parameter q gives an indication as to the additional core memory needed for computing and storing the preconditioner.
Tp denotes the CPU time to evaluate the preconditioner, i.e. in ICP and MCP the overall time to compute S and LS, and Ts the
CPU time required to iterate to convergence, while Ti is the ‘‘preprocessing” time needed to compute AINV and S0. The iter-
ations are completed when the final solution x satisfies the relative error e:
Table 5
3D test

LSL–ILU

ICP (sA

MCP (s

CPU tim
a Wit
b Wit
e ¼ kx� x�k
kx�k 6 tol ð39Þ
x� being a prescribed test solution with all components equal to 1 and tol between 10�8 and 10�5 depending on problem. All
numerical experiments are performed on a Compaq DS20 equipped with an alpha-processor ‘‘ev6” at 500 MHz, 1.5 GB of core
memory, and 8 MB of secondary cache. The code is written in Fortran 90 and compiled with -04 -tune=ev6 -arch=ev6

options. The CPU times are given in seconds.
The performance of MCP as compared to ICP and LSL–ILUT in the test cases considered above is shown in Tables 5 (3D

problems) and 6 (axisymmetric problems). The factor LK is computed allowing for 50 new nonzero entries for each row
(lfil K ¼ 50) and setting a drop tolerance relative to the average size of the K coefficients sK ¼ 10�4.

Inspection of Tables 5 and 6 reveals that MCP yields a faster Bi-CGStab convergence than both LSL–ILUT and ICP. The num-
ber of iterations is significantly smaller consistent with the better spectral properties of the preconditioned matrix fM�1A.
Fig. 3 provides the ratio between LSL–ILUT and MCP CPU times, and between ICP and MCP CPU times for different Dt values.
It is worth noting that MCP exhibits a speed-up between 1.2 and 4 relative to LSL–ILUT and between 1.7 and 6 relative to ICP
for the smallest time steps, i.e. the most difficult problems. As Dt grows, ill-conditioning becomes less severe and all algo-
rithms (LSL–ILUT, ICP and MCP) tend to exhibit a similar performance, with the only exception of problem M2D. Notice that
this is also accounted for Theorem 4.1 and Eq. (25), as kESk turns out to be more important than kEKk for Dt ! þ1.

The results obtained with the T-MCP variant are shown in Table 7. As expected, the average number of iterations is
slightly larger than with MCP. However, the total CPU time is slightly smaller in a number of cases (printed in italic in Table
7) due to the lower cost per iteration. Therefore, T-MCP appears to be roughly equivalent to MCP, and sometimes even a little
better. By contrast, the D-MCP-BiCGstab algorithm did not converge within the maximum number of iterations allowed for
in the four test cases and for all time steps Dt 2 ½1;105�.

Finally, MCP and T-MCP have been compared with LSL–ILUT on a larger example addressing the consolidation of the Ven-
ice lagoon subsurface, Italy, in a pilot project of seawater injection [32]. The corresponding matrix has a size N ¼ 416;800
with nnzðAÞ ¼ 22;322;336. This new example has been run on an IBM computer equipped with a Power5 dual core proces-
sor at 1900 MHz and 16 GB of core memory. The results are shown in Table 8. MCP and T-MCP are again almost equivalent,
with T-MCP superior for small time steps. The comparison with LSL–ILUT provides evidence of the better performance of a
problems

Dt M3Dsm
a

M3D
b

q Iter. CPU time (s) q Iter. CPU time (s)

Tp Ts Tt Tp Ts Tt

T 100 1.09 155 8.23 9.23 17.46 1.71 178 73.45 141.28 214.73
102 1.09 162 7.54 9.06 16.60 1.69 163 64.13 114.52 178.65
104 0.99 150 3.87 9.37 13.24 1.43 84 24.62 61.81 86.43

¼ 0:05) 100 1.52 70 2.83 6.99 9.82 1.62 175 26.95 165.52 192.47
102 1.45 69 2.16 6.35 8.51 1.60 176 26.77 163.62 190.39
104 1.05 72 1.05 4.96 6.01 1.58 175 23.79 157.45 181.24

A ¼ 0:1) 100 1.11 29 1.15 3.54 4.69 1.20 66 8.66 93.81 102.47
102 1.06 27 0.94 2.95 3.89 1.20 60 8.67 84.61 93.28
104 0.88 30 0.45 3.25 3.70 1.17 55 8.21 77.27 85.48

e (s) for Bi-CGStab preconditioned with optimal LSL–ILUT, ICP and MCP (Tt ¼ Tp þ Ts). S is computed with sS ¼ 10�4.
h ICP: Ti ¼ 5:28; with MCP: Ti ¼ 3:83.
h ICP: Ti ¼ 40:20; with MCP: Ti ¼ 12:75.



Table 6
Axisymmetric problems

Dt M2Dsm
a

M2D
b

q Iter. CPU time (s) q Iter. CPU time (s)

Tp Ts Tt Tp Ts Tt

LSL–ILUT 100 3.73 94 1.47 5.49 6.96 3.71 187 5.44 45.90 51.33
102 2.79 98 1.65 4.64 6.29 2.86 166 3.42 33.22 36.64
104 1.86 72 0.80 2.56 3.36 2.82 99 5.04 20.05 25.09

ICP (sA ¼ 0:05) 100 1.64 165 0.19 8.76 8.95 6.18 162 15.52 128.45 143.97
102 1.63 144 0.18 8.02 8.20 6.15 158 15.44 121.07 136.51
104 1.60 143 0.17 7.13 7.31 6.12 163 9.91 117.34 127.25

MCP (sA ¼ 0:05) 100 2.74 35 0.19 3.66 3.85 2.81 54 0.84 25.19 26.03
102 2.74 33 0.18 3.19 3.37 2.81 46 0.84 25.04 25.88
104 2.71 35 0.17 3.32 3.61 2.78 41 0.78 19.15 19.93

CPU time (s) for Bi-CGStab preconditioned with optimal LSL–ILUT, ICP and MCP (Tt ¼ Ts þ Tp). S is computed with sS ¼ 10�4.
a With ICP: Ti ¼ 0:75; with MCP: Ti ¼ 1:83.
b With ICP: Ti ¼ 32:21; with MCP: Ti ¼ 6:55.
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Fig. 3. Ratios between the LSL–ILUT and MCP CPU time (left); ICP and MCP CPU time (right) for different Dt values.

Table 7
Number of iterations and overall CPU time (s) for Bi-CGStab preconditioned with T-MCP

M3Dsm M3D M2Dsm M2D

Dt Iter. CPU Iter. CPU Iter. CPU Iter. CPU

100 37 5.21 66 85.88 38 3.03 57 25.34
102 36 4.99 60 80.95 37 3.08 51 20.65
104 40 3.96 56 72.54 40 3.24 49 21.38

Table 8
CPU time (s) for Bi-CGStab preconditioned with LSL–ILUT, MCP and T-MCP in a large size system (N ¼ 416;800) addressing a real application

LSL–ILUT MCP T-MCP

Dt Iter. CPU Iter. CPU Iter. CPU

100 66 76.9 38 22.1 32 18.1
102 21 40.3 32 18.9 28 15.6
104 25 25.2 17 7.7 23 8.7

The examples have been run on a different computer with respect to the previous test cases.
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Mixed Constraint approach, with speed-up factors up to 4.2 in the most favorable case. The overall gaining is emphasized
considering also the memory occupation, that turns out to be about three times larger using LSL–ILUT than MCP and T-MCP.
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7. Conclusions

A Mixed Constraint Preconditioner (MCP) has been developed for the iterative solution to the FE coupled consolidation
equations. MCP is an efficient variant of the Inexact Constraint Preconditioner implementing two different approximations
(both implicit and explicit) of the inverse of the (1,1) structural block K into the same algorithm. The implicit approximation
of K�1 is obtained with an incomplete triangular decomposition, while the explicit approximation is provided by the approx-
imate inverse AINV and is used in the Schur complement S. An upper bound is derived for the distance of the eigenvalues of
the preconditioned matrix from 1 depending on the errors involved in the approximation of both K�1 and S�1. The compu-
tational performance of MCP in a number of realistic numerical examples is fully consistent with Theorems 4.1 and 4.3 and
the relationship between the norms of the coefficient sub-matrices K, B and C and the hydro-geomechanical properties of the
porous medium.

A number of numerical experiments show that in the most ill-conditioned problems MCP typically outperforms both the
optimal LSL–ILUT preconditioner and ICP by up to a factor of 7 in the most favorable case. This outcome holds true also for
larger size matrices. Similarly to ICP, MCP proves more robust than LSL–ILUT allowing for Bi-CGStab to converge in severely
ill-conditioned problems as well. The possibly expensive cost for the computation of MCP is quickly made up for in transient
simulations and can be viewed as a preprocessing cost with only a limited impact on the overall solver performance. The
Triangular MCP variant proves almost equivalent to MCP and can represent a viable alternative especially for small time
steps. By contrast, the Diagonal MCP variant is a too poor approximation of A�1 and may perform satisfactorily only for very
large Dt values. Finally, a practical drawback of MCP and T-MCP might be represented by the relatively large number of
parameters to be set (dropping tolerances for the computation of S and AINV, and the fill-in parameters for the incomplete
decomposition of K and S). However, the analysis carried out on the examples dealt with in the present paper points out that
MCP and T-MCP are quite robust in relation to the above parameters and are rather insensitive to the time step size.
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